Glucose and lipid metabolism in insulin resistance : an experimental study in fat cells

Abstract: Type 2 diabetes is usually caused by a combination of pancreatic β-cell failure and insulin resistance in target tissues like liver, muscle and fat. Insulin resistance is characterised by an impaired effect of insulin to reduce hepatic glucose production and to promote glucose uptake in peripheral tissues. The focus of this study was to further elucidate cellular mechanisms for insulin resistance that may be of relevance for type 2 diabetes in humans. We used rat and human adipocytes as an established model of insulin’s target cells. Glucocorticoids, e.g. cortisol, can induce insulin resistance in vivo. In the present study, pretreatment of rat adipocytes in vitro for 24 h with the cortisol analogue dexamethasone produced a downregulation of glucose uptake capacity as well as a marked depletion of cellular insulin receptor substrate 1 (IRS-1) and protein kinase B (PKB), two proteins suggested to play a critical role in the intracellular signal transduction pathway of insulin. The amount of phosphorylated PKB in response to acute insulin treatment was decreased in parallel to total PKB content. The basal rate of lipolysis was enhanced, but insulin’s antilipolytic effect was not consistently altered following dexamethasone pretreatment. Alterations in blood glucose as well as insulin levels may be of great importance for cellular as well as whole-body insulin resistance. High glucose (≥15 mM) for 24 h induced a decrease in glucose uptake capacity in rat adipocytes and IRS-1 content was reduced whereas IRS-2 was increased. Long-term pretreatment with a high insulin concentration downregulated insulin binding capacity and when combined with high glucose, it produced a pronounced reduction of cellular IRS-1 and 2 content together with insensitivity to insulin’s effect to activate PKB and a decrease in glucose uptake capacity. A common denominator for a decrease in glucose uptake capacity in our rat adipocyte studies seems to be a decrease in IRS-1 content. Adipocytes from type 2 diabetes patients are insulin-resistant, but in our work the insulin resistance could be reversed by incubation of the cells at a physiological glucose level for 24 h. Insulin resistance in fresh adipocytes from type 2 diabetes patients was associated with in vivo insulin resistance and glycemic level and with adipocyte cell size and waist-hip ratio (WHR). As a potential mechanism for postprandial dyslipidemia in type 2 diabetes, we examined the nutritional regulation of subcutaneous adipose tissue lipoprotein lipase (LPL) activity. It was upregulated by ~40-50 % after a standardised lipid-enriched meal and this was very similar in type 2 diabetes patients and control subjects, suggesting that the postprandial hypertriglyceridemia found in type 2 diabetes is not explained by an altered nutritional regulation of LPL in subcutaneous fat. In conclusion, the present work provides evidence for novel interactions between glucocorticoids and insulin in the regulation of glucose metabolism that may potentially contribute to the development of insulin resistance. High levels of glucose and insulin produce perturbations in the insulin signalling pathway that may be of relevance for human type 2 diabetes. Cellular insulin resistance may be secondary to the diabetic state in vivo, e.g. via glucotoxicity. This is supported by our finding that insulin resistance in adipocytes from type 2 diabetes patients can be reversed after incubation at a physiological glucose level. Key words: adipocyte, insulin resistance, type 2 diabetes, insulin signalling, glucose uptake, insulin, glucose, dexamethasone, insulin receptor substrate, protein kinase B, GLUT4, lipoprotein lipase.