Insulin Signalling in Human Adipocytes and its Interplay with beta-Adrenergic Control of Lipolysis

Abstract: The prevalence of obesity has over the last 40 years nearly tripled and obesity is one of the major risk factors of developing type 2 diabetes. Type 2 diabetes was formerly called adultonset diabetes but today, probably due to the rise in childhood obesity, it is also seen in children and adolescents. Type 2 diabetes is diagnosed when the body no longer can control the glucose levels in the blood. This is due to an insulin resistant state in the insulin responding tissues, liver, adipose and muscle and insufficient production of insulin in the pancreas. However, in spite of extensive research the mechanisms behind insulin resistance is still not known.The adipose tissue is believed to play a major role in the development of whole body insulin resistance. Adipocytes are the most important sites for storage of the high energy containing triacylglycerols. Insulin stimulation causes the adipocyte to increase the uptake of glucose and to reduce lipolysis: the hydrolysis of triacylglycerol and release of glycerol and fatty acids. The insulin signalling network is complex with numerous proteins involved. These signaling proteins not only transmit the insulin signal but also create negative and positive feedbackloops and induce cross talk between different parts of the network and with the signalling of other hormones. One important positive feedback in insulin signalling is the mTORC1 mediated feedback to phosphorylation of IRS1 at serine 307. In paper I we found that in human adipocytes this feedback is not likely catalysed by the assumed kinase S6K1. However we find an immunoprecipitate of mTOR to contain a ser307 phosphorylating kinase.Scaffolding proteins serve as docking sites for several proteins to promote protein-protein interactions that facilitate signal transduction. In paper II we demonstrate the existence of the scaffolding protein IQGAP1 in human adipocytes and that the expression of IQGAP1 is downregulated in type 2 diabetes. We reveal that IQGAP1 co-localises with caveolae, invaginations of the plasma membrane where the insulin receptor is situated, and that this interaction is increased upon insulin stimulation.In paper III we focus on the control of lipolysis, and sought to understand the interplay between insulin and beta-adrenergic stimulation. We demonstrated that the re-esterification of fatty acids is downregulated in type 2 diabetes causing an increased release of fatty acids from the cells. We showed that beta-adrenergic stimulation with isoproterenol induced a negative feedback via PKA/Epac1 -> PI3K -> PKB -> PDE3B that reduced the cAMP levels and thereby also reduced lipolysis. We also showed that insulin, in addition to its well-known anti-lipolytic effect, at high concentrations had a positive effect on lipolysis. In conclusion we reveal an intricate control of the stimulation as well as the inhibition of lipolysis induced by both isoproterenol and insulin.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.