All-Digital PWM Transmitters

Abstract: Electronic devices with wireless connectivity are fast becoming a part of daily life. According to some estimates, in the next five years, 10 billion new devices with internet connectivity would be produced. To lower the costs and extend the battery life of electronic circuits, there is an increased interest in using lowcost, low-power CMOS circuits. By taking advantage of the higher integration capabilities of modern CMOS, the analog, digital, and radio circuits can be integrated on a single die, typically called a radio-frequency system-on-chip (RF-SoC).In an RF-SoC, most of the power is usually consumed by the radio circuits, especially the power amplifier (PA). Hence, to take advantage of the improved switching capability of transistors in modern CMOS, the use of switch-mode PAs (SMPAs) is becoming more popular. SMPAs exhibit a much higher efficiency as compared to their linear counterparts and can be easily integrated with the digital baseband circuits.To satisfy the demand for higher data throughput, modern wireless standards like LTE and IEEE 802.11 generate envelope-varying signals using advanced modulation schemes like M-QAM and OFDM. Among several other techniques, pulse-width modulation (PWM) allows for the amplification of the envelopevarying signals using SMPAs.The first part of this thesis explores techniques to improve the spectral performance of PWM-based transmitters. The proposed transmitters are fully digital, and the entire signal chain up to the PA can be implemented using the digital design flow, which is especially beneficial in sub-micron CMOS processes with low voltage headroom. A new transmitter is proposed that compensates for the aliasing distortion in polar PWM transmitters by using outphasing. The transmitter exhibits an improvement of up to 9 dB in dynamic range for a 1.4 MHz LTE uplink signal. The idea is extended to compensate for both image and aliasing distortions in all-digital implementations of polar PWM transmitters. By using a field programmable gate array (FPGA) and Class-D SMPAs, the proposed transmitter shows an improvement of up to 6.9 dBc in the adjacent channel leakage ratio (ACLR) and 10% in the error vector magnitude (EVM) for a 20 MHz LTE uplink signal. The proposed transmitter is fully programmable and can be easily adapted for multi-band and multi-standard transmission.To enhance the phase linearity of all-digital PWM transmitters, a new transmitter architecture based on outphasing is presented. The proposed transmitter uses outphasing to improve the phase resolution and exhibits an improvement of 2.8 dBc and 3.3% in ACLR and EVM, respectively.The difference between the polar and quadrature implementations of RFPWM based transmitters is explored. By using mathematical derivations and simulations, it is shown that the polar implementation outperforms the quadrature implementation due to the lower quantization noise. An RF-PWM based transmitter that eliminates both image and aliasing distortions is presented. The proposed transmitter has an all-digital implementation, uses a single SMPA, and eliminates the need for a power combiner resulting in a more compact design. For a 1.4 MHz LTE uplink signal, the proposed transmitter exhibits an improvement of up to 11.3 dBc in ACLR.The second part of this work focuses on the design of all-digital area-efficient architectures of time-to-digital converters (TDCs). A TDC is essentially a stopwatch with a pico-second resolution and can be used to accurately quantify the pulse width and position of PWM signals.A Vernier delay line-based TDC is presented that replaces the conventionally used sampling D flip-flops by a single transistor. This resulting implementation does not suffer from blackout time associated with D flip-flops allowing for a more compact design. The proposed TDC achieves a time resolution of 5.7 ps, and consumes 1.85 mW of power while operating at 50 MS/s.A modified switching scheme to reduce the power consumed by the thermometerto- binary encoder used in the TDCs is presented. By taking advantage of the operating nature of the TDCs, the proposed switching scheme reduces the power consumption by up to 40% for a 256-bit encoder.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.