System Aspects and Modulation Strategies of an HVDC-based Converter System for Wind Farms

University dissertation from Stockholm, Sweden : KTH

Abstract:  In this thesis, a new HVDC-based converter system for wind farms is investigated. It is based on a mutually commutated soft-switching converter system and provides a unique integrated solution for the wind turbine generator drive systems, the wind turbine interconnection, and the power conversion for HVDC transmission.In a wind farm, the mutually commutated converter system is a distributed system. A medium-frequency collection grid connects the converter station, equipped with a single-phase voltage source converter and a medium-frequency transmission transformer, with the wind turbines, each containing a cycloconverter and a medium-frequency distribution transformer. In this thesis, various system aspects regarding the application of a distributed mutually commutated converter system in a wind farm are investigated. Special attention is paid to the design of a medium-frequency collection grid that has an acceptable level of transient overvoltages, the design of medium-frequency transformers with suitable magnetic, electric and thermal properties, and the development of a strategy to commutate the voltage source converter during low power generation.In order to adapt the mutually commutated converter system for an application in a wind farm, it had to be further developped. Different carrier-based and space-vector oriented modulation methods have been investigated. It turns out that for any load angle there is a quasi-discontinuous pulse width modulation strategy that can produce the same pulse patterns as space vector modulation. In addition, a modulation strategy has been developed that allows to replace the IGBTs in the cycloconverter with cheap, robust, and reliable fast thyristors, despite their absence of turn-off capability. The feasibility of different modulation strategies for mutually commutated converter systems has been verified on a down-scaled prototype converter system with both IGBT- and thyristor-based cycloconverters.Finally, a feasible wind farm layout is proposed, which considerably reduces the energy generation costs for large winds farms distant to a strong grid connection point. As a consequence, the proposed solution may facilitate the establishment of remotely located wind farms.