Electron transport in microbial chlorate respiration

University dissertation from Karlstad : Karlstad University

Abstract: Several bacterial species are capable to use perchlorate and/or chlorate as an alternative electron acceptor in absence of oxygen. Microbial respiration of oxochlorates is important for biotreatment of effluent from industries where oxochlorates are produced or handled. One of these species, the Gram-negative Ideonella dechloratans, is able to reduce chlorate but not perchlorate. Two soluble enzymes, chlorate reductase and chlorite dismutase, participate in the conversion of chlorate into chloride and molecular oxygen. The present study deals with the electron transport from the membrane-bound components to the periplasmic chlorate reductase. Soluble c cytochromes were investigated for their ability to serve as electron donors to chlorate reductase. The results show that a 6 kDa c cytochrome serves as electron donor for chlorate reductase. This cytochrome also serves as electron donor for a terminal oxidase in the reduction of oxygen that is produced in the course of chlorate respiration. A gene encoding a soluble c cytochrome was found in close proximity to the gene cluster for chlorate reduction. This gene was cloned and expressed heterologously, and the resulting protein was investigated as a candidate electron donor for chlorate reductase. Electron transfer from this protein could not be demonstrated, suggesting that the gene product does not serve as immediate electron donor for chlorate reductase. 

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)