p53 Alterations in Human Skin : A Molecular Study Based on Morphology

Abstract: Mutation of the p53 gene appears to be an early event in skin cancer development. The present study is based on morphology and represents a cellular and genetic investigation of p53 alterations in normal human skin and basal cell cancer.Using double immunofluorescent labelling, we have demonstrated an increase in thymine dimers and p53 protein expression in the same keratinocytes following ultraviolet radiation. Large inter-individual differences in the kinetics of thymine dimer repair and subsequent epidermal p53 response were evident in both sunscreen-protected and non-protected skin. The formation of thymine dimers and the epidermal p53 response were partially blocked by topical sunscreen. We have optimized a method to analyze the p53 gene in single cells from frozen tissue sections. In chronically sun-exposed skin there exist clusters of p53 immunoreactive keratinocytes (p53 clones) in addition to scattered p53 immunoreactive cells. Laser assisted microdissection was used to retrieve single keratinocytes from immunostained tissue sections, single cells were amplified and the p53 gene was sequenced. We have shown that p53 mutations are prevalent in normal skin. Furthermore, we detected an epidermal p53 clone which had prevailed despite two months of total protection from ultraviolet light. Loss of heterozygosity in the PTCH and p53 loci as well as in the sequenced p53 gene was determined in basal cell cancer from sporadic cases and in patients with Gorlin syndrome. Allelic loss in the PTCH region was prominent in both sporadic and hereditary tumors, while loss of heterozygosity in the p53 locus was rare in both groups. p53 mutations found in the hereditary tumors differed from the typical mutations found in sporadic cases. In addition, we found genetically linked subclones with partially different p53 and/or PTCH genotypes in individual tumors. Our data show that both genes are important in the development of basal cell cancer.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)