Isomers of ions in space and planetary atmospheres

Abstract: Ion chemistry has become increasingly important in the evolution of the chemical inventory of extraterrestrial environments. Isomers of ions have also come to play an important role as, in many instances, the cold environments in the interstellar medium and high layers of planet and satellite atmospheres do not supply enough energy to overcome isomerization barriers and the isomers effectively act as separate molecules. In this licentiate thesis, several studies of the [CH3N]+ isomers are presented. Reactivity studies of the two isomers, the methanimine radical cation (H2CNH+) and aminomethylene (HCNH2+) with hydrocarbons C2H4, C2H2 and CH4, and IRPD spectroscopy of both species have been performed. Complimentary ab initio calculations aid in the determination of formation pathways of observed product channels and in the assignment of the vibrational bands seen in the IRPD spectrum.The results show that reaction pathways of the two isomers generally involve adduct formation followed by hydrogen ejection where the product or pathway is dependent on the ingoing reactant isomer. The IRPD spectrum allows identification of the different isomers via vibrational transitions. Isomer generation by electron ionization favours methanimine cation production with an abundance of 70% while with VUV photoionization it is possible to selectively produce isomers. It is concluded that isomerism must be considered when investigating the chemical environment of interstellar objects.