Study of Catalyst Deactivation in Three Different Industrial Processes

University dissertation from Växjö : Växjö University Press

Abstract: Deactivation of catalysts were investigated focusing on three industrial processes: 1) Selective Catalytic Reduction (SCR) for abatement of NOx from biomass combustion using V2O5-WO3 /TiO2 catalysts; 2) Catalytic oxidation of volatile organic compounds (VOC) from printing industries using a Pt/?-Al2O3 catalyst; and 3) Ni and Pt/Rh catalysts used in steam reforming reaction of bio-syngas obtained from biomass gasification. The aim has been to simulate industrial conditions in laboratory experiments in order to comprehend influence of compounds affecting catalysts performance. Typical catalyst lifetimes in industrial processes are several years, which are a challenge when accelerating deactivation in laboratory scale experiments where possible exposure times are few hours or days. Catalysts can be introduced to deactivating compounds through different routes. The first method examined was gaseous exposure, which was applied to deactivate VOC oxidation catalyst through exposure of gaseous hexamethyldisiloxane. The second method involved wet impregnation and was used for impregnation of SCR catalyst with salt solutions. The third method was based on exposure and deposition of size selected particles of deactivating substances on the catalyst. The latter device was developed during this work. It was applied to monolithic SCR catalysts as well as to pellet catalysts intended for steam reforming of biomass gasification syngas. Deactivated SCR catalyst samples by size selected exposure method were verified and compared with SCR catalysts used in a commercial biomass boiler for 6 500 h. Evaluations of fresh and deactivated samples were investigated using BET surface area; chemisorption and temperature programmed desorption (TPD); surface morphology using Scanning Electron Microscopy (SEM) and poison penetration profile through SEM with an Electron Micro Probe Analyser (EMPA) also equipped with a energy dispersive spectrometer (EDS); chemical analysis of accumulation of exposed compounds by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES); and influence on catalyst performance. The size selected generated particles of deactivating substances were characterized with respect to mean diameter and number size distribution through Scanning Mobility Particle Sizer (SMPS) and mass size distribution applying an Electric Low Pressure Impactor (ELPI). Results from catalyst characterization methods were useful tools in evaluation of catalyst deactivation routes. Understanding deactivation processes and impact on catalyst performance is vital for further optimization of catalysts with respect to performance and lifetime. Further research in this field can provide more resistant catalysts for application in industry leading to higher commercial benefits and further application of environmental catalysts in thermo-chemical conversion of biomass.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)