Impact of surface gravity waves on air-sea fluxes and upper-ocean mixing

Abstract: Surface gravity waves play a vital role in the air-sea interaction. They can alter the turbulence ofthe bottom atmospheric layer as well as the upper-ocean layer. Accordingly, they can affect themomentum flux, heat fluxes, as well as the upper-ocean mixing. In most numerical models, waveinfluences are not considered or not fully considered. The wave influences on the atmosphereand the ocean are important for weather forecasts and climate studies. Here, different aspects ofwave impact on the atmosphere and the ocean are introduced into numerical models.In the first study, a wave-state-dependent sea spray generation function and Charnock co-efficient were applied to a wind stress parameterization under high wind speeds. The newlyproposed wind stress parameterization and a sea spray influenced heat flux parameterizationwere applied to an atmosphere-wave coupled model to study their influence on the simulationof mid-latitude storms. The new wind stress parameterization reduces wind speed simulationerror during high wind speed ranges and intensifies the storms. Adding the sea spray impacton heat fluxes improves the model performance concerning the air temperature. Adding the seaspray impact both on the wind stress and heat fluxes results in best model performance in allexperiments for wind speed, and air temperature.In the second study, the influence of surface waves on upper-ocean mixing was parameter-ized into a 1D k − ε ocean turbulence model though four processes (wave breaking, Stokes driftinteraction with the Coriolis force, Langmuir circulation, and stirring by non-breaking waves)based mainly on existing investigations. Considering all the effects of surface gravity waves,rather than just one effect, significantly improves model performance. The non-breaking-wave-induced mixing and Langmuir turbulence are the most important terms when considering theimpact of waves on upper-ocean mixing. Sensitivity experiments demonstrate that vertical pro-files of the Stokes drift calculated from 2D wave spectrum improve the model performancesignificantly compared with other methods of calculating the vertical profiles of the Stokes drift.Introducing the wave influences in modelling systems, the results verified against measure-ments. Concluding from these studies for the further model development, the wave influencesshould be taken into account to improve the model performance.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)