Modeling and Simulation of Electricity Consumption Profiles in the Northern European Building Stock

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The electric power systems are currently being transformed through the integration of intermittent renewable energy resources and new types of electric loads. These developments run the risk of increasing mismatches between electricity supply and demand, and may cause non-favorable utilization rates of some power system components. Using Demand Response (DR) from flexible loads in the building stock is a promising solution to overcome these challenges for electricity market actors. However, as DR is not used at a large scale today, there are validity concerns regarding its cost-benefit and reliability when compared to traditional investment options in the power sector, e.g. network refurbishment. To analyze the potential in DR solutions, bottom-up simulation models which capture consumption processes in buildings is an alternative. These models must be simple enough to allow aggregations of buildings to be instantiated and at the same time intricate enough to include variations in individual behaviors of end-users. This is done so the electricity market actor can analyze how large volumes of flexibility acts in various market and power system operation contexts, but also can appreciate how individual end-users are affected by DR actions in terms of cost and comfort.The contribution of this thesis is bottom-up simulation models for generating load profiles in detached houses and office buildings. The models connect end-user behavior with the usage of appliances and hot water loads through non-homogenous Markov chains, along with physical modeling of the indoor environment and consumption of heating and cooling loads through lumped capacitance models. The modeling is based on a simplified approach where openly available data and statistics are used, i.e. data that is subject to privacy limitations, such as smart meter measurements are excluded. The models have been validated using real load data from detached houses and office buildings, related models in literature, along with energy-use statistics from national databases. The validation shows that the modeling approach is sound and can provide reasonably accurate load profiles as the error results are in alignment with related models from other research groups.This thesis is a composite thesis of five papers. Paper 1 presents a bottom-up simulation model to generate load profiles from space heating, hot water and appliances in detached houses. Paper 2 presents a data analytic framework for analyzing electricity-use from heating ventilation and air conditioning (HVAC) loads and appliance loads in an office building. Paper 3 presents a non-homogeneous Markov chain model to simulate representative occupancy profiles in single office rooms. Paper 4 utilizes the results in paper 2 and 3 to describe a bottom-up simulation model that generates load profiles in office buildings including HVAC loads and appliances. Paper 5 uses the model in paper 1 to analyze the technical feasibility of using DR to solve congestion problems in a distribution grid.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)