Cellular Studies of HER-family Specific Affibody Molecules

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: The human epidermal growth-factor like receptor (HER) family of receptor tyrosine kinases are important targets for cancer therapy. The family consists of four members - EGFR, HER2, HER3 and HER4 - that normally transfer stimulatory signals from extracellular growth factors to the intracellular signalling network. Over-activation of these receptors leads to uncontrolled cell proliferation and is seen in several types of tumours. The aim of the studies reported in this thesis was to study the uptake and effects of affibody molecules against EGFR, HER2 and HER3 in cultured cells. Affibody molecules are affinity proteins originally derived from one of the domains of protein A, and their small size and robust structure make them suitable agents for tumour targeting and therapy.Papers I and II of this thesis concern EGFR-specific affibody molecules, which were shown to be more similar to the antibody cetuximab than the natural ligand EGF in terms of cellular uptake, binding site and internalisation rate. In addition, fluorescence-based methods for the quantification of internalisation were evaluated.In the studies reported in papers III and IV, HER2-specific affibody molecules were utilised as carriers of radionuclides. Paper III reports that different cell lines exhibit different radiosensitivities to 211At-labelled affibody molecules; radiosensitivity was found to correlate with cell geometry and the rate of internalisation. Paper IV discusses the use of 17-AAG, an agent that induces HER2 internalisation and degradation, to force the internalisation of 211At- and 111In-labelled affibody molecules.Papers V and VI describe the selection and maturation of HER3-specific affibody molecules, which were found to compete with the receptor’s natural ligand, heregulin, for receptor binding. These affibody molecules were demonstrated to inhibit heregulin-induced HER3 activation and cell proliferation.The studies summarised in this paper will hopefully contribute to a better understanding of these affibody molecules and bring them one step closer to being helpful tools in the diagnosis and treatment of cancer.