Investigating the streaming potential phenomenon using electric measurements and numerical modelling with special reference to seepage monitoring in embankment dams

Abstract: A three-dimensional finite element computer program has been developed to numerically model the streaming potential phenomenon. The program can in fact calculate and display the primary and secondary potential distributions for any two coupled flows in a three dimensional domain. For streaming potentials, the primary flow is hydraulic and the secondary flow is electrical. The program operates in three separate stages. The program first determines the hydraulic potential distribution in the ground based on hydraulic conductivity values and the hydraulic driving forces, such as the pressure drop through an embankment dam. The program then calculates the geometry and magnitude of the electric current sources based on the fluid flow and cross-coupling conductivity values. Finally the electric potential distribution is solved for using these current sources and the electric conductivity distribution. Additionally, the program can incorporate external current sources, which can be used to simulate resistivity measurements in a model. The model domain can take any three-dimensional shape and can be divided into elements as desired. The individual elements can be assigned separate hydraulic, electric and cross-coupling conductivity values, creating an inhomogeneous anisotropic domain with three separate conductivity distributions. Four different types of finite element are available to choose from; two- and three-dimensional versions of isoparametric elements with either linear or quadratic interpolating polynomials. The program has been made fully graphical, allowing the user quick and easy access to information at any particular point of the domain. In order to provide a better picture of the streaming potentials in earth dams and the potential of the SP method for dam safety monitoring, SP investigations were performed on a number of embankment dams. Electric resistivity measurements were also performed on some of the dams to compliment the SP data. The resistivity data was found to be of considerable assistance for interpreting the SP measurements as well as for simulating real dam conditions with the modelling program. Three hydro-electric dams of different size on the Luleå River in northern Sweden were studied together with several dams built by mining companies for containing mine tailing reservoirs. A number of potential seepage areas were identified in several of the investigated dams.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.