Regulation of DNA damage responses by the Myc oncogene : implications for future anti-cancer therapies

Abstract: Myc is a transcription factor frequently found deregulated in human cancer. Cells with deregulated expression of Myc carry a selective advantage against its neighbours due to the fact that Myc-mediated transcription governs crucial cellular events such as proliferation and growth. In addition, Myc has been implicated in several other aspects of tumour biology like cellular immortality, the formation of new blood vessels and the colonization of distant tissues through the process of metastasis. Therapy aimed at disrupting essential pathways regulated by Myc is important because of the many different types of cancers that depend on continued signalling along these pathways.  This thesis describes new treatment opportunities for cancers with a high Myc signature. In Paper Ι, we describe a new role for the DNA methyltransferase inhibitor Decitabine in the treatment of Myc transformed tumours cells. We show that the therapeutic potential of Decitabine in the treatment of Burkitt Lymphoma relies not only on its ability to cause reactivation of silenced genes such as pro-apoptotic PUMA, but also on the DNA damage that this drug induces. In vivo, Decitabine delays disease progression of transplanted lymphoma cells. In Paper ΙΙ, we identify the DNA damage checkpoint kinase Chk1 as a therapeutic target in Myc overexpressing cancers. We show that targeting Chk1 with shRNA or with a novel small molecule inhibitor cause a delay in disease progression of transplanted lymphoma cells in vivo. In Paper ΙΙΙ, the Chk1-related kinase Chk2 is evaluated as a therapeutic target in Myc overexpressing cancers. Myc overexpressing cells are not dependent on Chk2 but we show that Chk2 abrogation using shRNA causes polyploidization and protection against DNA damage. However, Chk2-targeted therapy elicits a synergistic lethal response in combination with inhibition of the DNA repair associated protein PARP. In conclusion, this thesis shows the potential of targeting the DNA damage machinery and the functional hubs important for maintenance of genomic stability in tumours with a deregulated expression of Myc.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)