Excitonic and charge carrier transport in organic materials and device applications

Abstract: With the potential for future commercial use, organic electronics have been intensively studied for the last few decades. To exploit the next generation of high-performance devices, detailed study of the underlying physics is essential. Excitonic and charge carrier transport plays a critical role in device performance and related studies have attracted a lot of attention in recent decades. This thesis particularly focused on excitonic and charge carrier transport in organic materials and related device applications.In natural light harvesting systems, such as the reaction centers of purple bacteria, quantum coherence has been proposed to be present as a contributor to the related charge and energy transport processes, and almost 100% charge conversion is present in these efficient biological systems. This high energy conversion efficiency inspires the idea that if a similar strategy was used in artificial energy conversion devices such as organic photovoltaics, etc., this could significantly enhance the device’s performance. In the first study, the charge separation process in some donor/acceptor blends was investigated. The contribution of quantum coherence to device performance was studied in detail using several steady state and ultrafast transient techniques. In one efficient donor/acceptor blend, a pronounced coherence of charge separation was identified, which contributed to the enhancement of the photocurrent generation, which finally resulted in efficient device performance.For the light emitting diodes, triplet excitons harvesting plays a critical role in device performance. In the thermally activated delayed fluorescence (TADF) materials, due to an efficient reverse intersystem process from triplet excitons to singlet excitons, the losses due to triplet excitons were suppressed. As a result, a desired high quantum yield has been achieved. To enhance device efficiency, the detailed study of the upconversion physics between triplet and singlet is needed. Previous studies have proposed some physical models to explain this efficient upconversion process, while the nature of this physical process is still under debate and unclear. In my second work, we studied the exciton kinetics in two different TADF materials. These TADF materials were inserted in a protein fibril host, and the resulting protein scaffold was able to modify the geometric configuration of the related TADF molecule. As a result, an enhancement of the photoluminescence quantum yield was achieved.To achieve efficient device performance in organic electronics, the physical processes at the metal/material interface and charge carrier injection/extraction, also play a critical role. Efficient charge injection can be achieved by Ohmic contact, and charge injection/extraction of metal/organic materials has been intensively studied in the last few decades. In my third study, an efficient hole transport material based on the biopolymer DNA was introduced. A hole doping process was found in the hybrid materials and contributes to the Ohmic contacts. The hybrid material can be used in different organic electronics devices, such as field effect transistors, light emitting diodes and solar cells, and thus demonstrates a general application capability.In organic photovoltaics, the loss from the open circuit photovoltages has been an Achilles’ heel for further enhancement of device performance. The voltage loss includes the radiative and non-radiative value, and intensive studies have focused on how to suppress losses from the non-radiative channel. In my fourth study, the non-radiative voltage loss was studied in a series of terpolymer blends and ternary blends. Compared to the ternary blends, a decreased nonradiative loss was found in the terpolymer blends. 

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.