Exploring bio-based monomers for UV-curable polymer networks

Abstract: Increased environmental awareness and concern has led to a high demand for sustainable, bio-based materials. Consequently, there is a need for research and development of new bio-based polymeric materials that can be synthesized via routes eliminating excessively toxic reactants and by-products. The work presented in this thesis has focused on the utilization of catalysis, mainly enzymatic, and photopolymerization in order to create efficient synthesis of polymeric networks from bio-based monomers.Polyesters from bio-based monomers have been polymerized in bulk and thereafter crosslinked by UV initiation to yield polymer networks with tunable properties. The synthesis was also studied more in detail by varying the different types of catalysts and comparing their effect on the polymer products. Polyesters are a promising class of polymers that can be made from bio-based resources due to the wide range of available bio-based carboxylic acids and alcohols that can be combined to yield many polymers with different properties. However, the synthesis of polyesters is rather time-consuming in order to reach high conversions.As a more efficient alternative, short chain esters monomers and oligomers that have vinyl ether (VE) functionalities were developed. These VE-esters can be synthesized partly from bio-based resources, such as acids, fatty acids and diols, and their synthesis is efficient with enzymatic catalysis. The VE functionality provides a reactive group which can be polymerized rapidly with cationic polymerization. In general, the vinyl ether-esters can be synthesized in less than one hour and crosslinked within a few minutes, which is significantly faster than traditional polyester-synthesis and crosslinking. The enzymatic synthesis of vinyl ether esters also provided a method for developing monomers with orthogonal functionality which was explored by developing functionalizable materials with a variety of macromolecular architectures.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)