EGFR- and HER2-Binding Affibody Molecules : Cellular studies of monomeric, dimeric and bispecific ligands

Abstract: Abnormal expression and signaling of the ErbB receptors is associated with the development and progression of several forms of cancer. In this thesis, new ErbB-targeting affibody molecules are evaluated regarding their cellular effects in vitro. Since ligand binding to an ErbB receptor might have an impact on the cell it is important to be aware of these effects as they may have consequences for the continued growth of the tumor when used in vivo. The affibody molecules are intended for tumor targeting with the prospect of clinical use in imaging or therapy. Three types of affibody molecules were studied, HER2-binding, EGFR-binding and bispecific binders that target both EGFR and HER2. The HER2-targeting (ZHER2:342)2 showed promising characteristics. It sensitized SKBR-3 cells to irradiation and decreased cell growth to the same extent as the clinically approved antibody Herceptin. The monomeric version, ZHER2:342, did not induce any large effects on intracellular signaling or biological outcome. This makes (ZHER2:342)2 interesting for therapy purposes, while ZHER2:342 may be better suited for imaging. The bispecific affibody molecules were all able to simultaneously bind to both EGFR and HER2, but none of the six constructs resulted in any large effects on cellular outcome. Interestingly, all three monovalent binders are more functional when positioned at the N-terminal part of the construct and the (S4G)3 linker renders higher affinity of the bispecific binders compared to (G4S)3. Tumors that co-express several ErbB receptors are often more aggressive and associated with a worse prognosis, suggesting that the total ErbB expression pattern might be more informative than the expression level of one receptor regarding cancer prognosis and prediction of response to targeted therapies. Bispecific ligands could thus be used as imaging agents with prognostic value. Another aspect of dual targeting is the possibility of increased tumor specificity since tumors are more likely than healthy tissue to express high amounts of two receptors.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)