Fatigue Assessment of Cast Components Influence of Cast Defects

University dissertation from Stockholm : KTH

Abstract:  This thesis is on the fatigue assessment of cast components with special attention to defects. The primary material in view is nodular cast iron, but also cast steel is considered. However, the fatigue behaviour is in principle valid for general use on other cast metals.The first two papers is about general cast material behaviour in fatigue loading. The materials considered are a high strength alloyed cast steel and a medium strength nodular cast iron. It is concluded that cast defects is the main fatigue initiation cause and it is only in exception that the fatigue life is not ruled by fracture mechanics. The third paper is a fracture mechanics evaluation of a nodular iron cast sleeve. The analysis of the component is based on crack initiation from cast defects and low-cycle fatigue. Fracture mechanics material parameters for Paris law, c and m, are extracted for the materials considered. In paper D design quality rules for nodular cast iron based on the Swedish standard SS 11 40 60 is presented. The quality rules regard cast defects in fatigue assessments and facilitate defect-based component design. In paper E, a finite element tool that is capable to predict and calculate 3D crack propagation for embedded cracks and defects is presented. The tool is an add-on for ANSYS finite element program. In paper F, closure equations for nodular cast iron are proposed in parallel to refined fracture mechanics material data. The paper includes crack propagation at different load ratios and in different microstructures.Summarized, the thesis composes a further development of the fatigue assessment of cast components. The central role of defects in fatigue is clarified and tools are provided for fracture mechanics evaluations of defects as well as for defect based design. The quality rules are also fit for application in manufacturing and for acceptance tests, hence covering the span from design to complete product.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)