Water, Heat and Solute processes in Seasonally frozen Soils Experimental and Modeling Study

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Soil freezing and thawing is of importance in transport of water, heat and solute, which has coupled effects. Solute type and solute content in frozen soil could influence the osmotic potential of frozen soil and decrease freezing point, resulting in differences in soil freezing characteristic curves under various solute conditions. Prediction model provides an approach for estimating soil freezing characteristic curves under various water and solute conditions based on soil freezing characteristic curve obtained at certain water and solute conditions. Water, heat and solute transport in seasonally frozen soil is a coupled process strongly linked to evaporation and energy balance of soil surface. High solute content and shallow GWTD provide good conditions for water and solute accumulation in surface layer, which would result in more evaporation during thawing. Also, high solute content in upper layer would cause more liquid water to exist in upper layer, which may enhance evaporation during freezing period. Obvious increase in cumulative evaporation amount was detected for frost tube experiments, 51.0, 96.6, to 114.0 mm when initial solute content increased from 0.2%, 0.4%, to 0.6%, and initial GWTD of 1.5 m. Similar trends were observed for other GWTD and solute treatments. Water and heat transport simulated by the CoupModel combined with GLUE calibration showed good performances, when constrained by certain criteria. Uncertainties were investigated using ensemble of modeling results. Simulated energy partitioning showed intensive oscillations in daily courses during soil freezing/thawing periods and strongly influenced the stability of energy system on surface of soil. The study demonstrated the complexity in water, heat and solute transport in seasonally frozen soil, and the necessity of combining experimental data with numerical model for better understanding the processes as well in decision making for irrigation district water resources management.