Mapping incomplete relational data : networks in ecology & evolution

Abstract: We live in an interconnected world full of complex systems that cannot be understood simply by analyzing their components. From how genes regulate biological functions to the distribution of life on Earth, we need methods that can analyze systems as a whole.Networks are abstractions of complex systems, helping capture properties that emerge from patterns of interactions rather than from the individual parts. To understand the patterns of interactions in large networks, we need to simplify them by discovering their modular structure that often characterizes complex systems. A hierarchical modular structure functions as a map that lets us navigate relational data efficiently and helps us see the general patterns. But how reliable is the map if it is based on incomplete data?This thesis applies and builds upon the map equation, which is an information-theoretic method for detecting modular regularities in the flow patterns on networks. To robustly map incomplete data, we have developed three general approaches: (1) Adaptive resolution in both sampling of and dynamics on networks better fits the data. (2) Regularization avoids overfitting to random patterns. (3) Richer data can be included into the network for a more complete map. Methods that can include evolutionary relationships and handle incomplete data provide more powerful tools for mapping biodiversity in space and time.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)