Multicomponent Clusters/Nanoparticles : An Investigation of Electronic and Geometric Properties by Photoelectron Spectroscopy

Abstract: Clusters/nanoparticles are aggregates of a “small” number of building blocks, atoms or molecules, ranging from two up to millions of atoms. Two main groups of clusters have been studied using photoelectron spectroscopy based on synchrotron radiation. They are dry/wet alkali-halide clusters, including pure water clusters, and metal-based nanoparticles.For the dry alkali halide clusters, analysis of the data and theoretical modeling has allowed us insights into the local electronic properties at nanoscale: a change of polarizability of ions in the alkali-halide clusters due to the varying environment has been suggested. The study of the wet salt clusters shows that the alkali-halides are already solvated at the nanoscale reached by water clusters doped with salt vapor.The photoelectron angular distribution of water cluster shows lower anisotropy parameters as compared to the separate monomers. A model based on intracluster scattering has been built to partly explain the reduction.In the last part of the thesis, metal-based multi-component nanoparticles have been produced by self-assembly processes using reactive magnetron sputtering. Depending on the specific metal element, oxidation processes have been applied before or after the aggregation. Clearly radial distributions such as core-shell and “sandwich-like” structures have unambiguously determined by photoelectron spectroscopy.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)