Sustainable agriculture : From global challenges to local land management

Abstract: Despite the success of agriculture management practices in increasing the availability of food needed to meet the requirements of the expanding global population, there are increasing demands placed on the resources on which the sector depends. Opportunities for the development of agricultural systems are constrained by increasing competition, from other sectors, for shared resources. In tackling this constraint, agricultural management solutions are often narrowly focused on problems related to single resources. But this single focus may lead to unintended trade-offs. To make sound management decisions, there is a need to better understand trade-offs which may occur from resource use efficiency solutions implemented in the agricultural sector. With a particular focus on soil and water resources, the aim of this thesis was to investigate trade-offs that occur, when meeting demands placed on agriculture systems, if management solutions are narrowly focused. Broadly, we hypothesize that approaches to land management that take a more holistic view of agricultural systems being part of an ecosystem mosaic should be adopted to ensure sustainability. A global assessment of potential land requirements shows that national level production of sufficiently nutritious food may be constrained by land availability, such that allocation of land to nutritious crop production might come at the cost of lost land for other crops or uses. This constraint will be the most prevalent in African states. In further studies, we focused on the management of water resources, which are becoming particularly limiting for crops that have high water demands, such as rice. Through a meta-analysis of paired plot experiments, which assessed the effect of water saving irrigation in rice production, and soil sampling within An Giang, a major rice producing province of Vietnam, we examined the effect of water management practices on soil properties. The meta-analysis finds that significant reductions in soil organic carbon, and potentially organic matter bound nutrients, have been observed when water efficient practices replace continual flood irrigation. This suggests that, although yield reductions may not be seen in the short term, water saving irrigation may, over time, lead to reductions in soil fertility and yields. Within An Giang province, there are concerns regarding the loss of flood-borne, nutrient rich, sediments in fields where the annual flood waters have been completely regulated. However, we find that this complete regulation does not result in reduced soil nutrient properties when compared to areas where floods are only partially regulated. The effect of different land management practices on soil properties were further explored within the Kilombero Valley, Tanzania. Comparing farming practices along a gradient of intensity, we found contrasting effects of irrigation and fertilization, with irrigation increasing soil organic carbon and fertilization reducing soil organic carbon. Overall, the results of this thesis highlight the importance of looking beyond meeting short term needs, which can have negative long term consequences. The success of land management practices implemented now do not, necessarily, equate to their continued success in the future. As demands placed on agriculture are going to increase, the long term trade-offs which may occur from present practices must be at the forefront of agricultural management.