Exploring bis-MPA Based Dendritic Structures in Biomedicine

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: In the last decades there has been significant advances in polymer chemistry. New coupling chemistries, polymerization techniques and accelerated approaches enable researches to push the limits of structural control. One outcome of such development is the field of linear dendritic (LD) and dendritic linear dendritic (DLD) hybrid materials, drawing benefit from both linear and dendritic material properties. LD-hybrids with their high density of functional groups and customizability offer much promise for use in biological applications. This thesis deals with the potential use of sophisticated LD-hybrid materials focusing on the field of biomedicine and biomedical applications. The linear component is manly poly(ethylene glycol) (PEG) while the dendritic part consists of 2,2-Bis(hydroxymethyl)propionic (bis-MPA) building blocks.Initially a family of unsymmetrical LD amphiphiles was constructed and evaluated as carriers for drug delivery of chemotherapeutics. Through self-assembly driven by their amphiphilic nature nanocarriers (NC) were constructed with a hydrophobic core and hydrophilic corona. NC were found to enhance the effect of conventional therapeutics by relocating the drug from just the nucleus to the mitochondria among other organelles. Their versatile nature allowed for dual loading of a combination of chemotherapeutics and circumvented the resistance mechanism of resistant cancer cells.Dendrimers containing a disulfide in the backbone were also constructed, these enabled the selective fragmentation of the dendrimer by reduction to small molecular thiols. The fragments were also envisioned to disrupt the delicate thiol-disulfide balance intracellularly causing reactive oxygen species (ROS). Dendrimers were elaborated by conjugation to linear PEG creating LD-hybrids and evaluated in vitro and where found to cause high degree of ROS in cancerous cells.Thiol functional polymers were created, including linear polymers, dendrimers and DLD-hybrids. The DLD-hybrids were utilized as hydrogels through two efficient chemistries relying on the versatility of the thiol. By varying the generation of the LD-hybrid and the cross-linking chemistry the modulus could be tuned.Amine functional LD-hybrids were constructed utilizing the amino acid alanine. Scaffolds were utilized as antimicrobial hydrogels for prophylaxis during surgical intervention. LD-hybrids were initially evaluated in planktonic mode, and were found to have broad spectrum effect and were highly effective against resistant bacteria. Gelation was studied relying on N-hydroxysuccinimide (NHS) esters as cross-linkers, enabling instantaneous gelation under biological conditions. The gels moduli could be varied to match various tissues including stromal and muscle. The effect of the antimicrobial coatings was investigated with promising results both in vitro and in vivo.Finally, more industrially applicable hyperbranched LD-hybrids were constructed. The synthetic strategy relied on a convenient pseudo one-pot approach using Fisher esterification along with sequential monomer addition. Materials were found to have properties and characteristics similar to those of perfect dendritic LD-hybrids. And the scaffolds were evaluated in a range of applications such as hydrogels and isopourous films with promising results.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.