Bridge Edge Beams LCCA and Structural Analysis for the Evaluation of New Concepts

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Bridge edge beams in Sweden may involve up to 60% of the life-cyclemeasure costs incurred along the road bridge’s life span. Moreover, usercosts as means of traffic disturbances are caused. Consequently, the SwedishTransport Administration started a project to find better alternativeedge beam design proposals for the society.The goal of this thesis is to contribute to the development of bridgeedge beam solutions that can result better for the society in terms of totalcost and still fulfill the functional requirements, through the evaluation ofnew concepts. A life-cycle cost analysis was carried out to assess the proposedalternatives. The results served as a guidance to identify alternativesthat could qualify for more detailed studies. One such proposal wasa solution without edge beam. Since the edge beam is known to distributeconcentrated loads, the removal of such member could lead to loss ofrobustness of concrete bridge deck slabs. Thus, a structural analysis todetermine the influence of the edge beam was performed through nonlinearfinite-element modelling validated from experimental evidenceavailable in the literature. An assessment of the existing calculationmethods for the overhang slab is also presented.The results show that the edge beam behaves as a load-carrying memberwhich contributes to a wider distribution of shear forces. An increasedload resisting capacity for reinforced concrete bridge deck overhang slabswas documented. The removal of the edge beam would imply loss of robustnessin the bridge, which might have to be counteracted by an increaseof the thickness of the deck slab.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)