Silicon Carbide High Temperature Photodetectors and Image Sensor

Abstract: Silicon Carbide (SiC) has the advantages of ultraviolet (UV) sensing and high temperature characteristics because of its wide band gap. Both merits make SiC photodetectors very attractive in astronomy, oil drilling, combustion detection, biology and medical applications. Driven by the objective of probing the high temperature surface of Venus (460 °C), this thesis develops SiC photodetectors and an image sensor for extremely high temperature functions. The devices and circuits are demonstrated through the procedure of layout design, in-house processing and characterizations on two batches.The process flow has been optimized to be suitable for large scale integration (LSI) of SiC bipolar integrated circuits (IC). The improved processing steps are SiC dry etching, ohmic contacts and two-level metal interconnect with chemical-mechanical polishing (CMP). The optimized process flow is applied in the fabrication of discrete devices, a transistor-transistor logic (TTL) process design kit (PDK) and LSI circuits.The photodetectors developed in this thesis, including photodiodes with various mesa areas, a phototransistor and a phototransistor Darlington pair have stable characteristics in a wide temperature range (25 °C ~ 500 °C). The maximum operational temperature of the p-i-n photodiode (550 °C) is the highest recorded temperature accomplished ever by a photodiode. The optical responsivity of the photodetectors covers the spectrum from 220 nm to 380 nm, which is UV-only.The SiC pixel sensor and image sensor developed in this thesis are pioneer works. The pixel sensor overcomes the challenge of monolithic integration of SiC photodiode and transistors by sharing the same epitaxial layers and topside contacts. The pixel sensor is characterized from 25 °C to 500 °C. The whole image sensor circuit has 256 (16 ×16) pixel sensors and one 8-bit counter together with two 4-to-16 decoders for row/column selection. The digital circuits are built by the standard logic gates selected from the TTL PDK. The image sensor has 1959 transistors in total. The function of the image sensor up to 400 °C is verified by taking basic photos of nonuniform UV illumination on the pixel sensor array.This thesis makes an important attempt on the demonstration of SiC opto-electronic on-chip integration. The results lay a foundation on the development of future high temperature high resolution UV image sensors.