Protein structure dynamics and interplay : by single-particle electron microscopy

Abstract: Single-particle cryo-electron microscopy (cryo-EM) is a method capable of obtaining information about the structural organization and dynamics of large macromolecular assemblies. In the late nineties, the method was suggested to have the potential of generating “atomic resolution” reconstructions of particles above a certain mass. However, visualization of secondary structure elements in cryo-EM reconstructions has so far been achieved mainly for highly symmetrical macromolecular assemblies or by using previously existing X-ray structures to solve the initial alignment problem. A factor that severely limits the resolution for low-symmetry (point group symmetry Cn) particles is the problem of ab initio three-dimensional alignment of cryo-EM projection images of proteins in vitreous ice. A more general problem in the field of molecular biology is the study of heterogeneous structural properties of particles in preparations of purified macromolecular complexes. If not resolved, structural heterogeneity limits the achievable resolution of a cryo-EM reconstruction and makes correct biological interpretation difficult. If resolved, the heterogeneity instead offers a tremendous biological insight into the dynamic behaviour of a structure, and statistical information about partitioning over subpopulations with distinct structural features within the ensemble of particles may be gained. This thesis adds to the existing body of methods in the field of single-particle cryo-EM by addressing the problem of ab initio rotational alignment and the problem of resolving structural heterogeneity without using a priori information about the structural variability within large populations of cryo-EM projections of unstained proteins. The thesis aims at making the single-particle cryo-EM method a generally applicable tool for generating subnanometer resolution reconstructions and perform heterogeneity analysis of biological macromolecules.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)