Sound field separation with microphone arrays

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Sound field analysis is a fundamental tool in the design, manufacturing, testing and diagnosis of machines and transportation means, as well as the legislations that regulate noise levels in order to minimize environmental pollution. Customary solutions to the problem of sound field analysis are microphone array technologies such as near-field acoustic holography (NAH) and beamforming. One of the challenges of using these technologies often lies in the difficulty for separating disturbing sounds from the target source, specially when these are correlated. For example, NAH requires that no reflecting surfaces are found in the vicinity of the array, which is in theory only possible in an echo-free chamber. On the other hand, beamforming is most suitably used to separate uncorrelated sound sources, which is not the case of, for instance, the noise generated by the contact between the wheel of a train and a railway track. The present thesis examines the research problems of separating a sound source from its reflections, and separating the rail noise from the total noise radiated by a passing train. The overall goal of the thesis is to push the limits of microphone array technologies in the context of sound field separation, to the end of minimizing the cost and complexity of measurements and analyses. The proposed separation methods are formulated in the wavenumber domain, and the measurements are done with uniform single layer microphone arrays. The problem of separating reflections is addressed in three different papers: (i) compact sources and a parallel reflector, (ii) planar source and a parallel reflector, and (iii) a perpendicular reflector with respect to the microphone array, and the common requirement is the knowledge of the reflector impedance. The problem of separating rail noise is studied in a fourth paper, and the proposed method is formulated such that it does not require prior knowledge of the rail properties. Upon the findings obtained in the papers, a comprehensive description of areas for future work, as well as strategies to approach them, is given at the end of the thesis. 

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.