Tracking Emissions Reductions and Energy Efficiency in the Steel Industry

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The iron and steel industry has become increasingly globalised. Market conditions are also changing and de-carbonisation of production is challenging.The objective of this thesis is to assess how energy efficiency and greenhouse gas emissions reductions can be promoted and effectively monitored in the steel industry. The thesis contributes with analyses based on the Malmquist Productivity Index for a top-down analysis of the energy efficiency of EU Member States’ iron and steel production, and Partial Least Squares regression for bottom-up assessments of different monitoring tools. The thesis also contributes with a scrap availability assessment module to enhance the energy system model ETSAP-TIAM.The first phase of the research showed that future production needs to shift towards innovative low-CO2 technologies even when all available recycled material is fully used. Techniques using carbon capture and storage (CCS) as well as hydrogen-based technologies can be expected to become economically viable under tightened climate policies.The second phase of the research showed that current indicators are insufficient. System boundaries of energy use and emissions data do not align with production statistics. Indicators based on energy use or emissions in relation to production in physical terms may be useful to track specific processes. However, current indicators fail to reflect the companies’ product mix. Enhanced energy and climate indicators that adjust for the product mix provide better estimates while failing to reflect the increasing globalisation.Effective monitoring of industrial transformation will be increasingly important as pressure from climate policy via global CO2-pricing is unlikely in the short term. Current or enhanced indicators do not fully capture industrial transformation and are not recommended. Future research should focus on defining indicators to estimate energy use and emissions along industrial value chains in climate policy contexts.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)