Cob(I)alamin as a Quantitative Tool for Analysis, Metabolism and Toxicological Studies of Electrophilic Compounds : Butadiene Epoxides, Glycidamide and Sucralose

University dissertation from Stockholm : Department of Materials and Environmental Chemistry, Stockholm University

Abstract: Vitamin B12 can be reduced to cob(I)alamin [Cbl(I)], which is one of the most powerful nucleophiles known and referred to as a “supernucleophile”. Cbl(I) was applied as a tool in toxicological studies of the air pollutant 1,3-butadiene (BD), the toxicant acrylamide (AA) present in many foods, and the artificial sweetener sucralose.BD, a human carcinogen, is metabolised to genotoxic epoxides, two monoepoxides and the most potent diepoxybutane (DEB). AA, classified as a probable human carcinogen, is metabolised to the genotoxic epoxide glycidamide (GA). Due to their reactivity, quantitative analysis of the epoxides presents an analytical challenge. By using Cbl(I) for trapping, a sensitive and accurate method to quantify the epoxides as alkylcobalamins by LC-MS/MS in metabolism studies was developed and validated.Using the Cbl(I) method, enzyme kinetic parameters, Vmax and Km, were determined for the metabolic steps associated with the BD epoxides and with the formation of GA from AA, in liver S9 fractions of human, mouse and rat.An approach to estimate dose in vivo (i.e. area under concentration time curve, AUC) of BD epoxides by scaling the enzyme kinetic data was designed. The AUCs obtained from in vitro were evaluated by comparing with AUCs in vivo that were calculated from published haemoglobin adduct data. The AUCs from in vitro and in vivo showed to be in agreement with each other for mouse and rat, and this evaluation allowed prediction of the unknown AUC of DEB in human from BD exposure. This approach has a potential to reduce animal experiments in the future.Sucralose is of concern due to its chlorinated structure and persistence in the aquatic environment. It was demonstrated that Cbl(I) reacts with sucralose, also under in vitro physiological conditions, which might have toxicological significance. The demonstrated reaction also suggested a potential role for Cbl(I) in dehalogenation/degradation of sucralose. This was evaluated and shown possible using heptamethyl cobyrinate, a model compound for cobalamin.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.