Polyelectrolyte multilayers of cationic and anionic starch and their use for improving the strength of papers made from mechanical pulps

Abstract: Graphic paper is experiencing severe competition from other materials and, most of all, from other media. This means there is a great need to improve paper quality while reducing raw material and production costs. Polyelectrolyte multilayer (PEM) treatment (i.e., consecutively adding cationic and anionic polyelectrolytes to the charged surface of wood fibres and fines, to form layers of these polyelectrolytes on the fibres/fines) has in recent years been found to offer great potential both to introduce new properties and to improve the mechanical properties of papers made of the treated fibres. The main objective of this thesis was to develop a strategy for the PEM treatment of cationic and anionic starch to improve the mechanical properties of paper made of thermomechanical pulp (TMP), since PEM treatment of fibres has displayed great potential to improve the mechanical properties of sheets made of chemical pulp. Mechanical pulp, however, has a large fine material content. Since the fine material is highly charged, polyelectrolyte consumption would be unacceptably high if the entire pulp were PEM treated, so we applied PEM treatment only to a fibre fraction of the pulps in most trials in the present work. The polyelectrolytes used for PEMs have so far mostly been well-defined, expensive ones unsuitable for use in standard paper grades; to develop a more economically realistic alternative, we used cationic and anionic starches. PEM formation on SiO2 surfaces from three differently charged cationic and anionic starches was first evaluated at three different salt levels using quartz crystal microbalance with dissipation (QCM-D) and stagnation point adsorption reflectometry (SPAR). The starch combinations displaying the highest potential for stable PEM formation at higher salt concentrations were then evaluated on an entire TMP pulp, as well as on a fraction of the pulp to reduce the amount of starch needed for PEM formation. The results indicate that it is possible to form PEMs from cationic and anionic starch on a SiO2 surface. The charge density, salt concentration, and combination of starches all influenced PEM formation. PEM formation on mechanical fibres produced large improvements in the mechanical properties of the sheets made of the treated fibres, and the tensile index, stretch-at-break, Z-strength, and Scott bond values all increased. Fractionating the pulp and PEM treating only a fraction of the pulp, the long fibre and middle fraction, produced large decreases in the amount of starch needed and large improvements in the mechanical properties of the sheets when no fine material was subsequently added. As untreated fine material was subsequently added, the improvement in mechanical properties decreased. PEM formation produced almost no reduction in formation and only a slight increase in sheet density.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)