Evolutionary Dynamics of Mutation and Gene Transfer in Bacteria

University dissertation from Uppsala : Acta Universitatis Upsaliensis

Abstract: The study of bacterial evolution is fundamental for addressing current problems of antibiotic resistance and emerging infectious diseases and lays a solid foundation for successful and rational design in biotechnology and synthetic biology. The main aim of this thesis is to test evolutionary hypotheses, largely based on theoretical considerations and sequence analysis, by designing scenarios in a laboratory setting to obtain experimental data. Paper I examines how genomic GC-content can be reduced following a change in mutation rate and spectrum. Transcription-related biases in mutation location were found, but no replicative bias was detected. Paper II explores the distribution of fitness effects of random substitutions in two ribosomal protein genes using a highly sensitive fitness assay. The substitutions had a weakly deleterious effect, with low frequencies of both neutral and inactivating mutations. The surprising finding that synonymous and non-synonymous substitutions have very similar distribution of fitness effects suggests that, at least for these genes, fitness constraints are present mainly on the level of mRNA instead of protein. Paper III examines selective barriers to inter-species gene transfer by constructing mutants with a native gene replaced by an orthologue from another species. Results suggest that the fitness costs of these gene replacements are large enough to provide a barrier to this kind of horizontal gene transfer in nature. The paper also examines possible compensatory mechanisms that can reduce the cost of the poorly functioning alien genes and found that gene amplification acts as a first step to improve the selective contribution after transfer. Paper IV investigates the fitness constraints on horizontal gene transfer by inserting DNA from other species into the Salmonella chromosome. Results suggest that insertion of foreign DNA often is neutral and the manuscript provides new experimental data for theoretical analysis of interspecies genome variation and horizontal gene transfer between species.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)