Static and fatigue analyses of welded steel structures : some aspects towards lightweight design

Abstract: The objectives of this thesis comprise of overcoming the challenges in designing lightweight welded structures such as material selection, choice of fatigue design methods, and increased performance by using improvement techniques. Material selection of welded joints is dependent on the filler and base material strengths. Partially and fully penetrated cruciform and butt welded joints were designed in under-matching, matching, and over-matching filler materials. Base material steel grades were S600MC, S700MC, and S960. Current design rules are developed for welds in steel up to yield strength of 700MPa. Therefore, design rules in Eurocode3, AWS d1.1, and BSK 07 were verified and recommendations for developing design rules for designing welded joints in S960 were concluded. Numerical methodology for estimating static strength of welded joints by simulating heat affected zone was also developed.Another objective of the thesis work was to overcome the challenges in selection of fatigue design methods. The available design curves in standards are developed for uniaxial stress states, however, in real life the welds in mechanical structures are subjected to complex multiaxial stress states. Furthermore; weld toe failures are frequently investigated, weld root failures are seldom investigated. Therefore, in this work the multiaxial fatigue strength of welded joints failing at the weld root was assessed using experiments and various nominal and local stress based approaches. Butt welded joints with different weld seam inclinations with respect to applied uniaxial loading were designed to assess the root fatigue strength in higher multiaxial stress ratio regime. The fatigue strength of multi-pass tube-to-plate welded joints subjected to internal pressure only and combined internal pressure and torsion in and 90° out of phase loading was also investigated. Test data generated in this thesis was evaluated together with the test data collected from literature.Last objective of the thesis included investigation of the increased performance in fatigue strength by post weld treatment methods such as HFMI. The behavior of residual stresses induced due to HFMI treatment during fatigue loading is studied. Numerical residual stress estimations and residual stress relaxation models are developed and the effect of various HFMI treatment process parameters and steel grade on the induced residual stress state is investigated. Specimens studied were non load carrying longitudinal attachments and simple plates. Residual stresses in both test specimens were measured using X-ray diffraction technique.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)