Life Cycle Thinking in Environmentally Preferable Procurement

Abstract: Products generate environmental impacts during their life cycle by consuming raw materials and energy, releasing emissions and producing waste. A procurement organisation can be a considerable driving force for more environmentally friendly products e.g. by requiring that products meet certain environmental criteria. The scope for environmental consideration when procuring materiel can be limited by lack of reliable information about the environmental characteristics of the product or service. Different types of tools (e.g. eco-labels, guidelines, checklists and tools for environmental assessment) can contribute some knowledge and help identify environmentally preferable products. This thesis focuses on use of tools for environmental consideration in Swedish defence acquisition but the results are also relevant for other organisations, since the procurement process analysed is rather general and the legal requirements are similar for other public organisations in Europe. A Swedish government decision in 1998 requires the Swedish Armed Forces (SAF) and Defence Materiel Administration (FMV) to take environmental consideration in all phases of the acquisition process. The importance of a life cycle perspective is stressed in several SAF and FMV environmental documents. The starting point of this thesis was that environmental consideration should be taken in the Swedish acquisition of defence materiel, considering the whole life cycle of products, with the aim of formulating proposals on environmentally friendly procurement. Some Ecodesign tools were reviewed and evaluated, two methods for simplified Life Cycle Assessment (LCA) were compared, tools and methodology were recommended, and used to study military materiel, and environmental Life Cycle Costing (LCC) was examined. In environmental work lacking a life cycle perspective, the most significant aspects risk being overlooked. Use of quantitative and/or simplified LCAs and inclusion of environmental costs in LCC are therefore recommended. LCA proved an appropriate tool for involving environmental consideration in the acquisition process, since it focuses on products and their life cycle. The MECO method proved best for simplified LCA. These suggested methods were evaluated by interviews with actors in the acquisition process. Four areas for LCA use in acquisition were identified: learning about environmental aspects of products; fulfilling customer requirements; setting environmental requirements; and choosing between alternatives. The interviewees were interested in using LCA, but there is a need for an initiative by one or several actors if the method is to be used regularly and the results must be communicated within the organisations involved in procurement. Environmental consideration should be taken early in the acquisition process and environmental matters integrated into other activities of the organisations involved. Environmental costs are not explicitly considered in the LCCs used by the interviewees today, but internal environmental costs should be included. Costs likely to be internal can also be included.