Human Postures and Movements analysed through Constrained Optimization

University dissertation from Stockholm : KTH

Abstract: Constrained optimization is used to derive human postures and movements. In the first study a static 3D model with 30 muscle groups is used to analyse postures. The activation levels of these muscles are minimized in order to represent the individual's choice of posture. Subject specific data in terms of anthropometry, strength and orthopedic aids serve as input. The aim is to study effects from orthopedic treatment and altered abilities of the subject. Initial validation shows qualitative agreement of posture strategies but further details about passive stiffness and anthropometry are needed, especially to predict pelvis orientation. In the second application, the athletic long jump, a problem formulation is developed to find optimal movements of a multibody system when subjected to contact. The model was based on rigid links, joint actuators and a wobbling mass. The contact to the ground was modelled as a spring-damper system with tuned properties. The movement in the degrees of freedom representing physical joints was described over contact time through two fifth-order polynomials, with a variable transition time, while the motion in the degrees of freedom of contact and wobbling mass was integrated forwards in time, as a consequence. Muscle activation variables were then optimized in order to maximize ballistic flight distance. The optimization determined contact time, end configuration, activation and interaction with the ground from an initial configuration. The results from optimization show a reasonable agreement with experimentally recorded jumps, but individual recordings and measurements are needed for more precise conclusions. 

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)