Study of particle-current-electrocrystallization interactions in electroplating of Ni/SiC coatings

Abstract: Composite coatings have great potential due to the possibility to combine properties of two different materials in one coating. This way, new surface properties can be tailored and applied to any material's surface. Among different manufacturing routes, electrodeposition has the biggest potential in creating composite metal matrix coatings, especially nanocomposites. Nevertheless, there is a knowledge gap between the deposition of composite coatings in laboratory conditions, described in the literature, and those that are now in place on an industrial level. While micro-composites have been industrialised for about ten years, the production of Ni/SiC nanocomposite coatings by electroplating is still far from an industrial manufacturing floor. This is due to the lack of understanding of the mechanisms of nanoparticles codeposition leading to scattering results.The production of nanocomposite coatings is much more sensitive to the process parameters compared to microcomposite. The correlation between parameters and their influence on the codeposition are still not fully identified and understood. The codeposition models proposed in the literature are only valid in specific conditions, but composite depositions behave differently, or even opposite if some of the variables are modified.The main objective of this work is to identify the particle-current-electrocrystallization interactions in the production of Ni/SiC nanocomposites. A series of experiments are designed to isolate single variables and identify the controlling parameters of these interactions and their impact on the final properties.In this thesis, the effect of current density, type of current and particles size are identified as primary variables controlling the metal crystallisation and coatings properties.Among many parameters, a specific current waveform in pulse reverse mode proved to increase the codeposition rate effectively, doubling the content of nanoparticles compared to other techniques. Ultrasound assistance is also considered as stirring method when particles are suspended in the deposition bath to increase their stability and dispersion. The effect of Ultrasound on the particles codeposition and metal crystallisation is studied and compared to silent condition.Moreover, a surface treatment for the particle has been proven successful in making any particle to behave similarly in the Ni deposition bath. Furthermore, the codeposition rate doubled or tripled compared to untreated ones thanks to this treatment. Both ultrasonic agitation and surface treatment reduce the formation of aggregates, improving the particle dispersion and metal microstructure thus increasing the final hardness.The work proved the synergistic effect between particle and metal microstructure which affected the final properties of the coating. Therefore, when tailoring the composite coating to improve hardness, it is not only the amount of the particles that should be considered but also their influence on the electrocrystallisation process.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)