A Model Management and Integration Platform for Mechatronics Product Development

University dissertation from Stockholm : KTH

Abstract: Mechatronics development requires the close collaboration of various specialist teams and engineering disciplines. Developers from the different disciplines use domain-specific tools to specify and analyse the system of interest. This leads to different views of the system, each targeting a specific audience, using that audience’s familiar language, and concentrating on that audience’s concerns. Successful system development requires that the views of all developers produced by the different tools are well integrated into a whole, reducing any risks of inconsistencies and conflicts in the design information specified.This thesis discusses techniques of managing and integrating the views from various disciplines, taking better advantage of multidisciplinary, model-based, development. A Model Data Management (MDM) platform that generically manages models from the various domain-specific tools used in development is presented. The platform is viewed as a unification of the management functionalities typically provided by the discipline-specific PDM and SCM systems. The unification is achieved by unifying the kind of objects it manages – models. View integration is considered as an integral functionality of this platform.In demonstrating the platform’s feasibility, a generic version management functionality of models is implemented. In addition, model integration is investigated for the allocation of system functions onto the implementing hardware architecture. The proposed approach promotes the independent development of the views, allowing developers from each discipline to work concurrently, yet ensuring the completeness, correctness and analysis of any inter-view design decisions made.The prototype MDM platform builds on existing technologies from each of the mechanical and software disciplines. The proposed MDM system is built based on a configurable PDM system, given its maturity and ability to manage model contents appropriately. At the same time, the version control functionality borrows ideas from the fine-grained version control algorithms in the software discipline.The platform is argued to be feasible given the move towards model-based development in software engineering, bringing the discipline’s needs closer to those of the hardware discipline. This leads the way for an easier and more effective integrated management platform satisfying the needs of both disciplines using a common set of mechanisms.