Transition metal-catalyzed allylic and vinylic functionalization Method development and mechanistic investigations

University dissertation from Stockholm : Department of Organic Chemistry, Stockholm Univeristy

Abstract: The use of small molecule building blocks in, for example, pharmaceutical research and new material development, creates a need for new and improved organic synthesis methods. The use of transition metals as mediators and catalysts opens up new reaction pathways that have made the synthesis of completely new compounds possible as well as greatly improved the synthetic routes to known compounds.Herein, the development of new metal-mediated and catalyzed reactions for construction of vinylic and allylic carbon-carbon and carbon-heteroatom bonds is described.  The use of iodonium salts as coupling partners in Pd-catalyzed Heck type reactions with alkenes is shown to improve the current substrate scope. Results from a mechanistic study indicate that the reaction proceeds via high oxidation state palladium intermediates.The use of IIII reagents is also believed to facilitate a PdII/PdIV catalytic cycle in allylic silylation of alkenes using (SiMe3)2, which, to the best of our knowledge, is the first method developed for metal-catalyzed allylic C-H silylation.The same silyl-source, (SiMe3)2, has previously been used in a Pd-catalyzed allylic substitution reaction in which allylic silanes are formed from allylic alcohols. A detailed mechanistic investigation of this reaction is described in which by-products as well as intermediates, including the resting state of the catalyst, are identified using 1H, 11B, 19F and 29Si NMR spectroscopy. Kinetic experiments are performed that give information about the turn-over limiting step and the mechanism of the analogous borylation using B2pin2 is also investigated. Insights from this study further made it possible to improve the stereoselectivity of this reaction.Additionally, a new method for Cu-mediated trifluoromethylation of allylic halides is presented in which linear products are formed exclusively from both linear and branched allylic substrates at room temperature.  Identification of allylic fluorides as by-products during the reaction also led to the development of a similar Cu-mediated reaction for the fluorination of allylic halides.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)