Mechanics-based Design Framework for Flexible Pavements

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: Load induced top-down fatigue cracking has been recognized recently as a major distress phenomenon in asphalt pavements. This paper presents a mechanics-based design framework in load and resistance factor design (LRFD) format for the top-down fatigue cracking performance evaluation of flexible pavements. This was achieved by enhancing further the hot mix asphalt fracture mechanics (HMA-FM) model through the incorporation of mixture morphology influence on key fracture properties, and incorporating partial safety factors to account for variabilities and uncertainties. The analysis framework was calibrated and validated using pavement sections that have high quality laboratory data and well documented field performance histories. Moreover, as traffic volume was identified in having a dominant influence on predicted performance, a further investigation was performed to establish and evaluate truck traffic characterization parameters effect on predicted results.A two-component reliability analysis methodology, which uses central composite design (CCD) based response surface approach for surrogate model generation and the first order reliability method (FORM) for reliability estimation was used for the development of the LRFD mechanics-based design framework. The effectiveness of the design framework was investigated through design examples, and the results have shown that the formulated partial safety factors have accounted effectively the variabilities involved in the design process. Further investigation was performed to establish the influence design inputs variabilities have on target reliabilities through case studies that combine input variabilities in a systematic way. It was observed from the results that the coefficient of variation (COV) level of the variability irrespective of the distribution type used have a significant influence on estimated target reliability.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)