Fundamentals of Wetting and Mechanical Durability of Superhydrophobic Coatings

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: In paper I the friction between three different superhydrophobic surfaces and water drops were investigated using high?speed video. The surfaces were two based on a hydrophobic wax and the third was the leaf of a Lotus (Nelumbo Nucifera). The acceleration of water drops was measured as a function of drop size and surface inclination. For small capillary numbers it was shown that the dissipation was dominated by pinning?depinning transitions along the trailing contact line. A parameter called the superhydrophobic sliding resistance bsh has been introduced. The motion of drops on superhydrophobic surfaces of a general macroscopic topography can be predicted provided that bsh and the drop size are known. This theory also infers the existence of an equilibrium sliding angle, beq, at which the drop acceleration is zero.The effect of line?shaped defects on the motion of water drops on superhydrophobic surfaces were also investigated using high?speed video in paper II. It was shown that the motion of the drop in the vicinity of the defect can be approximated by a damped harmonic oscillator. Whether a drop got trapped or not while traversing the defect was determined by the incident speed and the characteristics of the oscillator. In systems with low viscous dissipation it is possible to predict the trapping speed as well as the exit speed using a simple work?energy consideration.The resistance of wax based superhydrophobic coatings subjected to different types of mechanical damage were investigated in paper III. Scratch tests were performed using atomic force microscopy (AFM) and rubbing with an index finger. Coatings were also subjected to compression with a silicone rubber stamp. The effect of impacting water drops was also investigated. A load of 12 nN was enough to remove the coating from the substrate. The coatings remained superhydrophobic at compression pressures up to 59 kPa but the superhydrophobic properties were lost after only one stroke with a finger. The coatings resisted at least 200 000 impacts of falling water drops without losing their superhydrophobic properties.In paper IV superhydrophobic coatings were fabricated in a semi?continuous process, where an alkyl ketene dimer (AKD) was dissolved in supercritical carbon dioxide (scCO2) and sprayed onto the substrate. Several different substrates such as: glass, aluminium, paper, poly (ethylene terephthalate) (PET) and poly (tetrafluoroethylene) (PTFE) were successfully coated. The most efficient spray process, considering surface properties and mass of extracted AKD, was obtained at the lowest temperature investigated, 67 °C, and the highest pressure evaluated in this study, 25 MPa. The influence of the pre?expansion conditions (p, T) on the surface temperature (at a spray distance of 3 cm) was also shown to be negligible.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.