Long-term performance of water repellants on rendered autoclaved aerated concrete

Abstract: Many failures of external walls made of porous buildingmaterials are caused by excessive moisture content,particularly after driving rain and under long duration ofmoist conditions. Lack of sufficient protection againstexposure conditions is one of the reasons for external wallsprematurely demonstrating failures, i.e. properties andperformance above/below critical levels. Silicon-based waterrepellants are increasingly used in order to improve theperformance of both old and new buildings. Water repellants areexpected to prolong the service life and improve the durabilityof wall components by preventing or minimising water ingressinto the structure and thus delaying the deteriorating effectsof the atmosphere. To date, various kinds of water repellantshave been developed. However, only limited research has beencarried out, particularly on the long-term field exposuretesting. Existing research is mainly focused on the performanceof surface treatments of concrete structures and the protectionof historical buildings built of stone, brick and wood, and isprimarily based on short-term laboratory testing. The aim ofthis research work is to study the long-term performance,degradation processes and ageing characteristics of renderedautoclaved aerated concrete (AAC) with and without waterrepellants. Investigations are carried out by physical andchemical analysis of fresh samples, samples naturally weatheredby long-term field exposure and samples artificially aged byshort-term accelerated laboratory tests. Two differentapplication of water repellants are employed: impregnation ofrendering surface with an aqueous product and as additive inpowder form mixed into the fresh rendering mortar. Continuousmoisture and temperature monitoring of naturally exposed testsamples are also included in the study. Wetcorr sensors andresistance-type nail electrodes are used to measure the surfacemoisture and the moisture content in the material,respectively. This thesis describes the experimental set-upand presents the results from site monitoring and laboratorytests of unexposed, naturally and artificially exposed samples(freeze-thaw and UV+water). The results from the continuousmoisture measurements are compared with the results obtainedfrom the full-scale test cabin built within the EUREKA-projectE 2116 DurAAC. The test cabin has the same basic measurementinstruments for continuous monitoring of moisture andtemperature. An attempt has been made to develop methods forlong-term performance assessment of water repellants to be usedin service life prediction. The combination of data obtainedfrom the field measurements with data obtained from thelaboratory tests and analysis may also meet practical needs ofthe end-users.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)