Cellular responses to amyloid-beta protofibrils : Focus on astrocytes, extracellular vesicles and antibody treatment

Abstract: Knowledge about the cellular mechanisms behind the initiation and propagation of Alzheimer’s disease (AD) is limited. Decades of research have focused on neuronal abnormalities in AD, but recently more attention has been given to the glial cells. Being the most numerous glial cell type in the brain, astrocytes are important for many functions, but their role in AD is poorly understood. The aim with this thesis was to clarify the involvement of astrocytes in AD by using a co-culture system of primary neurons and glia. The co-cultures were exposed to soluble amyloid-beta (Aβ) aggregates, i.e. protofibrils that are known to be particularly harmful.In Paper I, the capacity of astrocytes to ingest and degrade Aβ protofibrils was investigated. We found that astrocytes effectively ingested Aβ, but were ineffective in degrading the material. The intracellular accumulation of Aβ in astrocytes resulted in lysosomal dysfunction, high intracellular load of partly N-terminally truncated Aβ and extracellular vesicle (EV) mediated neuronal cell death.Cells can communicate by releasing cargo into EVs, but the role of EVs in the spreading of Aβ pathology is unclear. In Paper II, the protein content of EVs released specifically following Aβ protofibril exposure was analyzed. We found markedly increased levels of apolipoprotein E (apoE) in EVs from Aβ protofibril exposed co-cultures, suggesting a role for intercellular transfer of apoE in Aβ pathology.Passive immunotherapy has been suggested as a promising therapeutic strategy for AD. In Paper III, we investigated if the Aβ protofibril-selective antibody mAb158 could affect Aβ clearance in the co-culture. The mAb158 treatment reduced Aβ accumulation in astrocytes and rescued neurons from Aβ-induced cell death.In Paper IV, we explored the effect of EVs, isolated from Aβ protofibril exposed co-cultures on cultured neurons. In addition to increased cell death, we found that such EVs had a strong negative impact on the synapses, dendrites and mitochondria of the neurons.Taken together, this thesis contributes with important knowledge about the role of astrocytes in Aβ pathology, the vesicle-mediated spreading of Aβ and the effects of anti-Aβ antibody treatment.