Modeling and Diagnosis of Friction and Wear in Industrial Robots

University dissertation from Linköping : Linköping University Electronic Press

Abstract: High availability and low operational costs are critical for industrial systems. While industrial equipments are designed to endure several years of uninterrupted operation, their behavior and performance will eventually deteriorate over time. To support service and operation decisions, it is important to devise methods to infer the condition of equipments from available data.The monitoring of industrial robots is an important problem considered in this thesis. The main focus is on the design of methods for the detection of excessive degradations due to wear in a robot joint. Since wear is related to friction, an important idea for the proposed solutions is to analyze the behavior of friction in the joint to infer about wear. Based on a proposed friction model and friction data collected from dedicated experiments, a method is suggested to estimate wear-related effects to friction. As it is shown, the achieved estimates allow for a clear distinction of the wear effects even in the presence of large variations to friction associated to other variables, such as temperature and load.In automated manufacturing, a continuous and repeatable operation of equipments is important to achieve production requirements. Such repetitive behavior of equipments is explored to define a data-driven approach to diagnosis. Considering data collected from a repetitive operation, an abnormality is inferred by comparing nominal against monitored data in the distribution domain. The approach is demonstrated with successful applications for the diagnosis of wear in industrial robots and gear faults in a rotating machine.Because only limited knowledge can be embedded in a fault detection method, it is important to evaluate solutions in scenarios of practical relevance. A simulation based framework is proposed that allows for determination of which variables affect a fault detection method the most and how these variables delimit the effectiveness of the solution. Based on an average performance criterion, an approach is also suggested for a direct comparison of different methods. The ideas are illustrated for the robotics application, revealing properties of the problem and of different fault detection solutions.An important task in fault diagnosis is a correct determination of presence of a condition change. An early and reliable detection of an abnormality is important to support service, giving enough time to perform maintenance and avoid downtime. Data-driven methods are proposed for anomaly detection that only require availability of nominal data and minimal/meaningful specification parameters from the user. Estimates of the detection uncertainties are also possible, supporting higher level service decisions. The approach is illustrated with simulations and real data examples including the robotics application.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)