From information management to task management in electronic mail

University dissertation from Linköping : Linköping University Electronic Press

Abstract: Electronic mail (e-mail) is an under-utilised resource of information and knowledge. It could be an important part of the larger so-called organisational memory (OM)—if it were not so disorganised and fragmented. The OM contains the knowledge of the organisation’s employees, written records, and data. This thesis is about organising and managing information in, and about, e-mail so as to make it retrievable and usable for task management purposes.The approach is user-centred and based on a conceptual model for task management. The model is designed to handle tasks that occur in the communications in an open distributed system, such as Internet e-mail. Both structured and unstructured tasks can be supported. Furthermore, the model includes management of desktop source information, which comprises the different electronically available sources in a user’s computer environment. The information from these is used in the model to sort information and thereby handle tasks and related information. Tasks are managed as conversations, that is, exchanges of messages.We present a language called Formal Language for Conversations (FLC), based on speech act theory, which is used to organise messages and relevant information for tasks. FLC provides the container for task-related information, as well as the context for managing tasks. The use of FLC is exemplified in two scenarios: scheduling a meeting and making conference arrangements. We describe a prototype based on the conceptual model. The prototype explicitly refines and supports the notion of threads, which are employed so as to give tasks a context. It integrates the use of FLC into the traditional threading mechanism of e-mail, in addition to matching on text in the body. An agent architecture is also described, which is used to harmonise the information in the heterogeneous desktop sources. Finally, human-readable filtering rules created by a machine learning algorithm are employed in the prototype. The prototype is evaluated with regard to its thread-matching capability, as well as the creation of usable and readable filtering rules. Both are deemed satisfactory.