Tailoring adhesion and wetting properties of cellulose fibers and model surfaces

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The layer-by-layer (LbL) technique was used to modify the surface of cellulose fibers by consecutive adsorption of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) followed by a final adsorbed layer of anionic paraffin wax colloids. Paper hand sheets made from the modified fibers were found to be highly hydrophobic with a contact angle of 150°. In addition to the significantly increased hydrophobicity, the sheets showed improved mechanical properties, such as a higher tensile strength. Heat treatment of the prepared sheets further enhanced both the mechanical properties and the hydrophobicity. These results demonstrate the flexibility and robustness of the LbL technique, which allows us to combine the known adhesive effect of PAH/PAA LbL films with the functionality of wax nanoparticles, creating a stronger and highly hydrophobic paper.It was further observed that LbL modified sheets without wax also displayed increased hydrophobicity when heat treated. The mechanism was studied through model experiments where LbL films of PAH/PAA were assembled on flat non-porous model cellulose surfaces. Contact angle measurements showed the same trend due to heat treatment of the model films, although, the absolute value of the contact angles were smaller. Analysis using the highly interfacial sensitive vibrational sum frequency spectroscopy technique showed an enrichment of CH3 groups (from the polymer chain ends) at the solid/air interface. These results indicate that during the heat treatment, a reorientation of polymer chains occurs to minimize the surface energy of the LbL film.In the second part of this work, the adhesive interactions between the main constituents of wood fibers were studied using high-resolution measuring techniques and well-defined model films of cellulose, hemicellulose and lignin. Successful surface modification of polydimethylsiloxane (PDMS) caps, needed in the Johnson-Kendall-Roberts (JKR) measuring methodology, by LbL deposition of nanofibrillated cellulose (NFC) and poly(ethylene imine) (PEI) allowed for the first known all-wood biopolymer JKR measurements of the adhesion between cellulose/cellulose, cellulose/lignin and the cellulose/glucomannan surfaces. The work of adhesion on loading and the adhesion hysteresis were similar for all three systems, suggesting that adhesion between the different wood biopolymers does not differ greatly.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)