Structural-acoustic vibrations in wooden assemblies: Experimental modal analysis and finite element modelling

University dissertation from Växjö, Sweden : Linnaeus University Press

Abstract: This doctoral thesis concerns flanking transmission in light weight, wooden multi-storey buildings within the low frequency, primarily 20-120 Hz. The overall aim is to investigate how the finite element method can contribute in the design phase to evaluate different junctions regarding flanking transmission.Two field measurements of accelerations in light weight wooden buildings have been evaluated. In these, two sources; a stepping machine, and an electrodynamic shaker, were used. The shaker was shown to give more detailed information. However, since a light weight structure in field exhibit energy losses to surrounding building parts, reliable damping estimates were difficult to obtain.In addition, two laboratory measurements were made. These were evaluated using experimental modal analysis, giving the eigenmodes and the damping of the structures. The damping for these particular structures varies significantly with frequency, especially when an elastomer is used in the floor-wall junction. The overall damping is also higher when elastomers are used in the floor-wall junction in comparison to a screwed junction. By analysing the eigenmodes, using the modal assurance criterion, of the same structure with two types of junctions it was concluded that the modes become significantly different. Thereby the overall behavior differs.Several finite element models representing both the field and laboratory test setups have been made. The junctions between the building blocks in the models have been modeled using tie or springs and dashpots. Visual observation and the modal assurance criterion show that there is more rotational stiffness in the test structures than in the models.The findings in this doctoral thesis add understanding to how modern joints in wooden constructions can be represented by FE modelling. They will contribute in developing FE models that can be used to see the acoustic effects prior to building an entire house. However, further research is still needed.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)