Construction of force measuring optical tweezers instrumentation and investigations of biophysical properties of bacterial adhesion organelles

University dissertation from Umeå : Fysik

Abstract: Optical tweezers are a technique in which microscopic-sized particles, including living cells and bacteria, can be non-intrusively trapped with high accuracy solely using focused light. The technique has therefore become a powerful tool in the field of biophysics. Optical tweezers thereby provide outstanding manipulation possibilities of cells as well as semi-transparent materials, both non-invasively and non-destructively, in biological systems. In addition, optical tweezers can measure minute forces (< 10-12 N), probe molecular interactions and their energy landscapes, and apply both static and dynamic forces in biological systems in a controlled manner. The assessment of intermolecular forces with force measuring optical tweezers, and thereby the biomechanical structure of biological objects, has therefore considerably facilitated our understanding of interactions and structures of biological systems.Adhesive bacterial organelles, so called pili, mediate adhesion to host cells and are therefore crucial for the initial bacterial-cell contact. Thus, they serve as an important virulence factor. The investigation of pili, both their biogenesis and their expected in vivo properties, brings information that can be of importance for the design of new drugs to prevent bacterial infections, which is crucial in the era of increased bacterial resistance towards antibiotics.In this thesis, an experimental setup of a force measuring optical tweezers system and the results of a number of biomechanical investigations of adhesive bacterial organelles are presented. Force measuring optical tweezers have been used to characterize three different types of adhesive organelles under various conditions, P, type 1, and S pili, which all are expressed by uropathogenic Escherichia coli. A quantitative biophysical force-extension model, built upon the structure and force response, has been developed. It is found, that this model describes the biomechanical properties for all three pili in an excellent way. Various parameters in their energy landscape, e.g., bond lengths and transition barrier heights, are assessed and the difference in behavior is compared. The work has resulted in a method that in a swift way allows us to probe different types of pili with high force and high spatial resolution, which has provided an enhanced understanding of the biomechanical function of these pili.