Microbiological analysis of municipal wastewater treating photobioreactors

University dissertation from Västerås : Mälardalen University

Abstract: Microalgae reactors, commonly known as photobioreactors, have become increasingly popular as an alternative for wastewater treatment. These systems reduce pollutants and remove nutrients such as nitrogen and phosphorous compounds from wastewater utilizing microalgae and bacteria. The biomass produced in the reactors can potentially be used to produce biofuels and decrease some of the energy demands of the process.Wastewater treating photobioreactors are a relatively new technology and many aspects of their microbiology need further study. This thesis presents a broad overview of the algal and bacterial communities present in these systems by looking at the most important species, metabolic pathways and growth dynamics of both algae and bacteria.The experiments presented in this thesis were conducted using municipal wastewater from the Västerås wastewater treatment plant. The wastewater was inoculated with algae from Lake Mälaren and compared to non-inoculated reactors. Overall, the inoculated reactors demonstrated better algal growth than those that were not inoculated. The tested systems also removed much of the ammonium and phosphorous present in the wastewater.The dominant algae in the tested systems belonged to the genera Scenedesmus, Desmodesmus and Chlorella. In addition to algae, the systems contained a large number of bacteria, mostly from the phyla Proteobacteria and Bacteroidetes.The algal photobioreactors contained a lower abundance of genes related to nitrogen metabolism, virulence and antibiotic resistance compared to the initial wastewater, showing that a shift in the bacterial community had occurred. The bacteria found in the systems were shown to be involved in synthesis of vitamins essential for algae growth such as vitamin B12, suggesting cooperation between the bacteria and algae.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)