Quantum Optics with Propagating Microwaves in Superconducting Circuits

Abstract: We address recent advances in quantum optics with propagating microwavesin superconducting circuits. This research field exploits on the fact that the coupling between a superconducting artificial atom and propagating microwave photons in a one-dimensional (1D) open transmission line can be made strong enough to observe quantum effects, without using any cavity to confine the microwave photons.We embed an artificial atom, a superconducting transmon qubit, in a 1D opentransmission line and investigate the scattering properties of coherent microwaves. When an input coherent state, with an average photon number much less than 1, is on resonance with the artificial atom, we observe extinction of up to 99% in the forward propagating field. We observe the strong nonlinearity of the artificial atom and under strong driving we observe the Mollow triplet. We also study the statistics of the reflected and transmitted beams, which are predicted to be nonclassical states. In particular, we demonstrate photon antibunching in the reflected beam by measuring the second-order correlation function. By applying a second control tone, we observe the Autler-Townes splitting and a giant cross-Kerr effect.Furthermore, we demonstrate fast operation of a single-photon router usingthe Autler-Townes splitting. This device provides important steps towards the realization of a quantum network. This thesis describes the motivation, theoretical background, design, implementation and measurement results.

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)