T cells in chronic obstructive pulmonary disease

University dissertation from Umeå : Umeå university

Abstract: Background: Tobacco smoking is the main cause of chronic obstructive pulmonary disease, COPD, but the mechanisms by which cigarette smoke induces COPD are still elusive. T lymphocytes have been implicated in the pathogenesis of the disease, but their role in the airway inflammation in COPD is not fully understood. The aim of this thesis was therefore to address T lymphocyte subsets and their activation in the airways of subjects with COPD, in comparison to smokers with normal lung function (S) and never smokers (NS).Methods: Subjects with moderate to severe COPD were recruited along with controls. They were all non-atopic and clinically stable, without any exacerbation during at least three months prior to inclusion. Only medication with short-acting β2-agonists and/or anti-cholinergic drugs was permitted. All subjects underwent bronchoscopy with endobronchial mucosal biopsy sampling as well as bronchial wash, BW, and bronchoalveolar lavage, BAL, collection. Biopsies were immunohistochemically stained for inflammatory cells and markers. BW and BAL fluids were prepared for differential cell counts. Soluble markers were measured in BW and lymphocyte subsets were determined in BAL using flow cytometry.Results: In biopsies, an increase in epithelial CD3+ and CD8+ cells was found in COPD, compared to NS. In BAL fluid, CD8+ cells were enhanced, whereas CD4+ cells were reduced in subjects with COPD and S, compared to NS. Furthermore, CD4+ and CD8+ cells were more activated both in COPD and S, in terms of increased expression of CD25, CD69 and HLA-DR. NKG2D-expressing CD8+ T cells in BAL fluid were enhanced in both COPD and S. CD4+CD25bright cells were upregulated in COPD and S, suggesting the presence of regulatory T cells. Further analyses of T cell subsets with the more specific markers for regulatory T cells, FoxP3 and CD127, indicated a smoking-induced expansion of non-regulatory T cells, which tended to normalize after smoking cessation in COPD. Currently smoking subjects with COPD still expressed high proportions of activated non-regulatory CD4+ T cells. The data on FoxP3 expression further indicated that the increase in CD25 expression in COPD and S was not only associated with the expansion of regulatory T cells. As CD127 expression is reported to be inversely associated with FoxP3, the data indicate the expansion of a non-regulatory CD25+ population in smokers and patients with stable COPD. The immunohistochemical staining for the NKG2D ligands MICA and MICB on epithelial cells was unchanged.Conclusion: The results of this thesis suggest a role for CD4+ and CD8+ T-cells in clinically stable COPD, indicating that T-cells are of importance in the long-term inflammatory response in COPD. Regardless of current smoking habits, activated CD8+ T lymphocytes were found to be increased in BAL fluid from subjects with COPD, suggesting that changes in CD8+ T cells are associated with a persistent immune response and, thus, of importance in COPD pathogenesis. In contrast, the expansion of non-regulatory CD25+CD4+ cells in BAL fluid seemed to be preferentially smoke-related. In summary, the data indicate that, among airway T cells, changes in CD8+ cells seem to be highly associated with COPD pathogenesis, whereas changes in CD4+ cells appear to be related to cigarette smoke-induced responses. Further, a non regulatory population of helper T cells was identified in BAL fluid of COPD patients, which may contribute to the persistent cytotoxic T cell responses.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.