Dynamic Systems: Evaluation, Screening and Synthetic Application

University dissertation from Stockholm : KTH Royal Institute of Technology

Abstract: The research work reported in the thesis deals with the development of dynamic covalent systems and their applications in evaluation and screening of protein-ligands and enzyme inhibitors, as well as in synthetic methodologies. The thesis is divided into four parts as described below.In part one, synthetic methodologies to access 3-functionalized phthalides and 3-thioisoindolinones using the concept of cascade reactions are demonstrated. Efficient syntheses of the target products are designed and performed in one-pot process under mild reaction conditions. In part two, phosphine-catalyzed disulfide metathesis for the generation of dynamic carbohydrate system in aqueous solution is demonstrated. In the presence of biological target (Concanavalin A), the optimal dynamic ligand is successfully identified in situ by the 1H STD-NMR spectroscopy.In part three, lipase-catalyzed resolutions of dynamic reversible systems using reversible cyanohydrin and hemithioacetal reactions in one-pot processes are demonstrated. The dynamic systems are generated under thermodynamic control in organic solution and subsequently resolved by lipase-mediated resolution under kinetic control. The resolution processes resulted in the lipase-selected substrates with high structural and stereochemical specificities.In the last part, dynamic fragment-based strategy is presented using ?-galactosidase as a model target enzyme. Based on our previous study, the best dynamic inhibitor of ?-galactosidase was identified using 1H STD-NMR technique from dynamic hemithioacetal systems. The structure of the dynamic inhibitor is tailored by fragment linking and optimization processes. The designed inhibitor structures are then synthesized and tested for inhibition activities against ?-galactosidase.  

  CLICK HERE TO DOWNLOAD THE WHOLE DISSERTATION. (in PDF format)