Testing and Evaluation of Interfibre Joint Strength under Mixed-Mode Loading

University dissertation from Sweden : KTH Royal Institute of Technology

Abstract: The failure properties of interfibre bonds are the key for the build-up of strength in fibrous materials such as paper and paperboard. In order to tailor the properties of such materials by chemical or mechanical treatments and to learn how such modifications influence the properties at a microscopic level, direct measurement of individual fibre--fibre crosses are typically performed. However, the state of loading in the interfibre joint, in testing of individual fibre--fibre crosses, is in general very complex and a greater understanding for how to evaluate the mechanical properties of interfibre joints is desirable.In Paper A, a method for manufacturing multiple fibre--fibre cross specimens and a procedure for testing interfibre joints at different modes of loading is presented. The method is applied to investigate the strength of fibre-fibre crosses with different geometry and at two principally different modes of loading. Also, an investigation on the influence of drying pressure, the drying method as well as a comparison of pulp fibres from two different degrees of refining is presented. The force at rupture is scaled in terms of different geometric parameters; nominal overlap area, length and width of the joint region. It is shown that neither of the methods of scaling unambiguously reduced the coefficient of variation of the mean strength and that the force at rupture in a peeling type of loading was about 20% of the ones tested in the conventional shearing type of loading.In Paper B, a procedure for evaluating interfibre joint strength measurements in terms of resultant forces and moments at rupture is presented. The method is applied to investigate the state of loading in fibre-fibre crosses tested in two principally different modes of loading. It is shown that for a typical interfibre joint test, the modes of loading other than pure shear, cannot in general be neglected and is strongly dependent on the structural geometry of the fibre-fibre crosses. Also, the stress state in the interface centroid was estimated in order to quantify how the mode of loading influence the amount of normal stresses that develop in relation to the amount of shear stresses in the interfibre joint.

  This dissertation MIGHT be available in PDF-format. Check this page to see if it is available for download.